

Synergistic Nuclear Fuel Cycles of the Future

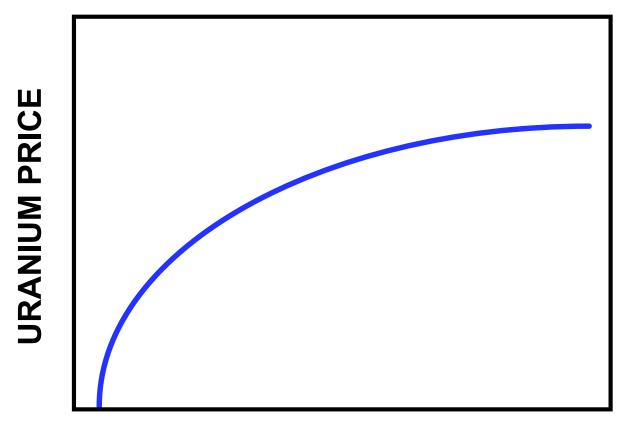
by D.A. Meneley, A.R Dastur, P.J. Fehrenbach ATOMIC ENERGY OF CANADA LIMITED and K.H. Talbot ONTARIO HYDRO

> Presented at Global '95, Versailles, France September 10-14, 1995

> > Global '95 Page 1 of xx

Objectives of this Study

- Discuss long-term future fuel cycle options
- Give guidance to short-term development
- Examine the role of the CANDU PHWR
- Provide framework for CANDU development



World Nuclear Fuel Inventory

- Large absolute fuel supplies uranium and thorium
- Limited economic supply at today's utilization level
- Higher fuel utilization greatly increases economic supply
- Power reactor types chosen today may determine future utilization options

AFFORDABLE RESERVES OF NUCLEAR FUEL

URANIUM RESERVE

Global '95 Page 4 of xx

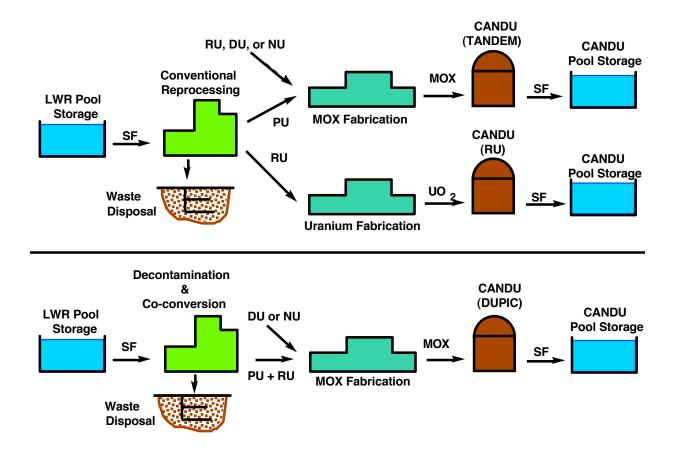
The Case for High-Conversion Thermal Reactors

- They are in commercial use today CANDU-PHWR
- Synergistic cycles can utilize RepU and Pu in LWR spent fuel
- They adapt easily to burning ex-weapon materials
- Th-U and Th-Pu cycles for new long-term fuel resource
- They are efficient minor actinide burners
- Bred plutonium from LMR can be used efficiently

Development Needed for CANDU Advanced Fuels

- Proof-testing of RU and MOX fuel in a power reactor
- Pilot- and full-scale testing of DUPIC dry reprocessing
- Development of neutral-matrix carrier fuel
- Proof testing of Th-U and Th-Pu fuels in a power reactor

Power-Reactor Proof Testing in CANDU


- Begins with carrier bundles containing test elements
- Selected channels are loaded with one or more bundles
- Power of test fuel is increased progressively
- Number of bundles of test fuel in core are increased
- Full loading of test fuel conversion complete
- Process is fully reversible at any stage

Global '95 Page 7 of xx

4

LWR-CANDU Synergistic Fuel Cycles

Fuel Cycle Characteristics of LWR and CANDU

	Specific Natural Uranium Usage	Specific Fuel Disposal Mass
	Mg/GWy(e)	Mg/GWy(e)
Enriched Uranium in LWR	217	33.2
 LWR-plutonium recycled in LW 	R 185	29.2
LWR-Pu + re-enriched LWR-U		
recycled in LWR	157	24.7
 Natural Uranium in CANDU 	157	157.0
 Slightly-enriched U in CANDU 		
(1.2 w/o U235)	114	49.8

LWR-CANDU Synergistic Fuel Cycle Characteristics

	Specific Natural Uranium Usage	Specific Fuel Disposal Mass
	Mg/GWy(e)	Mg/GWy(e)
 LWR-Pu recycled in LWR, 		
recovered LWR-U in CANDU	151	23.8
 Re-clad LWR spent fuel 		
recycled in CANDU (DUPIC)	125	19.7
LWR-Pu and LWR-U		
recycled in CANDU	119	18.8
 Re-clad LWR spent fuel recycled 		
in CANDU/Th-U233 converter	98	17.4
 Transuranics from LWR spent fuel 		
annihilated in CANDU	0	1.2 Global '95 Page 10 of x

5 Page 10 of xx

Energy From LWR-CANDU Synergistic Fuel Cycles (Assuming 35 MWd/kg burnup in LWR Stage)

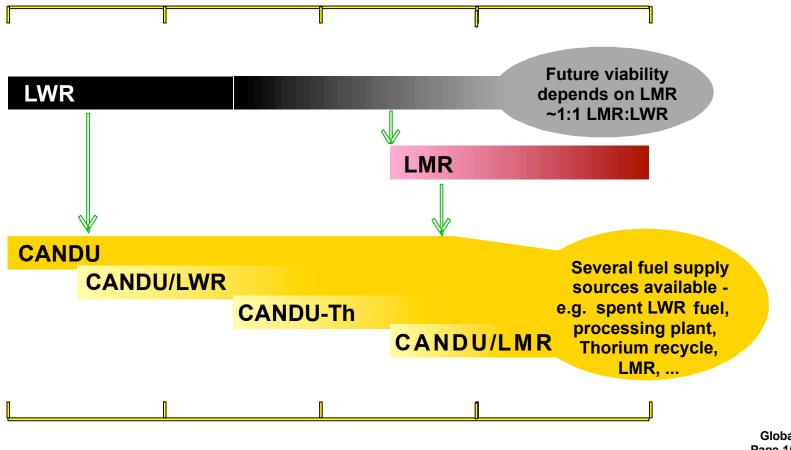
	MWd/kg of LWR Fuel - Total	Percent Increase over LWR Cycle
 LWR-Pu recycled in LWR, 		_
recovered LWR-U in CANDU	47	35
Re-clad LWR spent fuel		
recycled in CANDU	53	51
LWR-Pu and LWR-U		
recycled in CANDU	60	72
Re-clad LWR spent fuel recycled	k	
in CANDU/Th-U233 converte		82
 Transuranics from LWR spent full 	lel	
annihilated in CANDU	37	5 Global '95 Page 11 of xx

Burning FBR Plutonium in CANDU (Once Through)

	Specific Plutonium Requirement	Specific Fuel Disposal Mass
	Mg/GWy(e)	Mg/GWy(e)
 Uranium/Plutonium MOX in CAND 	U 0.73	61
 Thorium/Plutonium MOX in CAND 	U 0.31	20
 Uranium/Plutonium MOX in LWR 	1.00	29

BRUCE ENERGY CENTRE TODAY

Global '95 Page 13 of xx

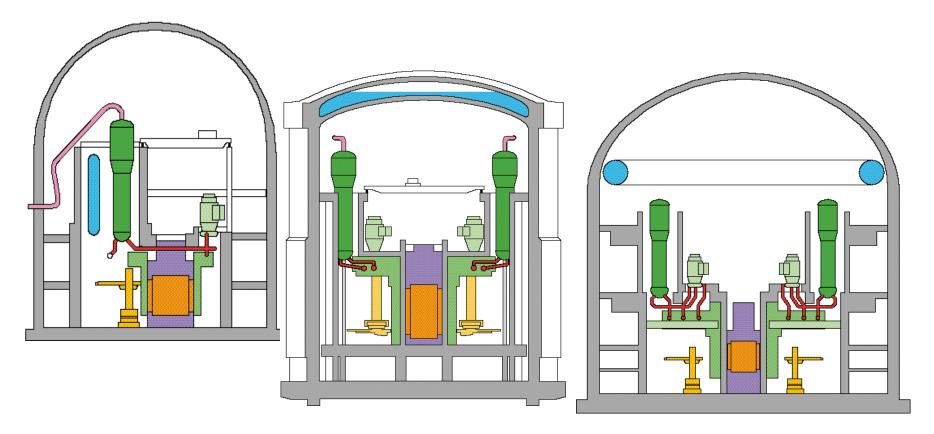


Possible Development of Bruce Energy Centre

- "Vertical" Development -- Electricity Production, Fuel Systems
 - Fuel dry storage systems
 - Additional CANDU generation capacity
 - Long-term: LMR with pyro-processing of fuel
- "Horizontal" Development Toward a Sustainable System
 - Steam for alcohol prod'n, farm feed processing, greenhouse
 - Electrolytic hydrogen, methanol synthesis
 - Other agro-industrial uses for electricity and steam

Long-Term Fuel Supply Strategies

Global '95 Page 15 of xx



SUMMARY

- There is no hurry -- economics will decide the time of introduction
- Current technology is sufficient for good fuel utilization
- Combination of high-gain breeder and high-conversion thermal reactor gives excellent fuel utilization in the long term
- Thorium once-through cycles in CANDU utilize present fuel resources and provide fuel legacy for the long term
- CANDU is a good actinide burner (for long-term waste management)

Today's Products CANDU 3, CANDU 6, and CANDU 9

Global '95 Page 19 of xx